

UH
.-ﬁ
(23 Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Data Analysis with R

16 - String manipulation and regular
expressions

Saskia A. Otto
Postdoctoral Researcher

What is a string again?

e Any value written within a pair of single quote or double quotes in R is treated as a string and
stored in a character vector (within double quotes).

e Lets look at a famous quote made by Albert Einstein:

einstein <- c("The difference", "between stupidity",
"and genius is that", "genius has its limits.")

— The character vector einstein contains 4 elements or more precisely 4 strings.

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Manipulation of strings

e R may not be as rich and diverse as other scripting languages when it comes to string
manipulation, but it can take you very far if you know how.

This tutorial gives you only a short introduction into some functions for basic manipulations.

Some of these functions require regular expressions (regex or regexpr in short), which are a
concise language for describing patterns in strings that typically contain unstructured or semi-
structured data.

To learn more about regex | recommend the excellent website http://www.regular-
expressions.info. It contains many different topics, resources, examples, and tutorials at both
beginner and advanced levels.

@ Data analysis with R

http://www.regular-expressions.info/
https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Manipulation of strings

Even if you don't plan to do text analysis, text mining, or natural language processing, it is
useful to have some knowledge on handling and processing strings in R for the following

reasons:

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

e Your dataset most likely will contain some text, e.g. stations names, species names, etc.

o you might want to remove a given character in the names of your variables or in the entire
dataset

you might want to convert labels to upper case (or lower case)
you might want to replace an outdated species names with the new name
you might want to re-classify certain categories, e.g. group different life stages together

you want to abbreviate names

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

e Your dataset most likely will contain some text, e.g. stations names, species names, etc.

o you might want to remove a given character in the names of your variables or in the entire
dataset

you might want to convert labels to upper case (or lower case)
you might want to replace an outdated species names with the new name
you might want to re-classify certain categories, e.g. group different life stages together
you want to abbreviate names
e You want to extract data from the web (web-scraping) and remove irrelevant information.
e You want to remove all unnecessary metadata that your imported dataset contains.

e You want to iterate the data import and processing for 100 data files that have slightly different
file names.

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Some useful base functions

@ Data analysis with R

base functions
paste(x, y, sep = ' ')
paste(x, collapse = ' ')

toupper (x)

tolower (x)

nchar (x)

grep(pattern, x)

gsub(pattern,
replacement, Xx)

‘ description

Join multiple vectors together.
Join elements of a vector together.
Convert to uppercase.

Convert to lowercase.

Number of characters in a string.

detects patterns in a string, output
is a logical vector

performs replacement of all
matches

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Some useful base functions

base functions description

paste(x, y, sep = ") Join multiple vectors together.
paste(x, collapse = ' ') Join elements of a vector together.
toupper (x) Convert to uppercase.

tolower (x) Convert to lowercase.

nchar (x) Number of characters in a string.

detects patterns in a string, output

grep(pattern, x) is a logical vector

gsub(pattern, performs replacement of all
replacement, X) matches

Most of the times these functions are enough and they will allow you to get your job done. However, they have

some drawbacks when it comes to handling NAs or pasting elements with zero length.

A nice package that solves these problems and provides several functions for carrying out consistent string

processing comes again from tidyverse...

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

The stringr package ?;’

e stringr adds more functionality to the base functions for handling strings in R.
e In stringr,

o argument names (and positions) are consistent,

o all functions deal with NA's and zero length character appropriately, and

o the output data structures from each function matches the input data structures of other
functions

o all functions start with str_ so you can quickly select the appropriate one from the
dropdown list displayed by R Studio

e to access these function load stringr or tidyverse:

library(stringr)
library(tidyverse)

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

A quick comparison of base and stringr functions

str_c makes difference
between NA (or
NA_character_) and "NA",

whereas paste treats them
base functions description stringr functions all the same!

paste(x, y, sep = ' ") Join multiple vectors together. str c(x, y, sep =
paste(x, collapse = ' ') Join elements of a vector together. | str c(x, collapse
toupper (x) Convert to uppercase. | str_to_upper(x)
tolower (x) .Convert to lowercase. | str_to_lower(x)

nchar (x) Number of characters in a string. |str_length(x)

detects patterns in a string, output

tt : i
grep(pattern, x) is a logical vector

str detect(x, pattern)

gsub(pattern, performs replacement of all str_replace all(x,
replacement, X) matches pattern, replacement)

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

A quick comparison of base and stringr functions

str_c makes difference
between NA (or
NA_character_) and "NA",

whereas paste treats them
base functions description stringr functions all the same!

paste(x, y, sep = ' ")
paste(x, collapse = '
toupper(x)

tolower (x)

nchar(x)

grep(pattern, x)

gsub(pattern,
replacement, X)

")

Join multiple vectors together. str_c(x, y, sep =

Join elements of a vector together. str c(x, collapse

Convert to uppercase. str_to_upper(x)

Convert to lowercase. str_to_lower(x)

Number of characters in a string. |str_length(x)

detects patterns in a string, output

i i tr tect (x ttern
is a logical vector str_detect(x, pattern)

performs replacement of all str_replace all(x,
matches pattern, replacement)

x <= c("Shark", "whale", "Ray") str_to_lower (x)

str_length(x)

@ Data analysis with R

[1] "shark" "whale" "ray"

str_to_upper (x)

[l] "SHARK" "WHALE" "RAY"

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Combining and subsetting strings using stringr

a<-"Gadus" b <- "morhua"

ab <- str_c(a, b, sep="")
[1] "Gadus morhua"

subsetting counted from start% écounted from end (add -)
by position : : P : .

I L
a <- str_sub(ab, 1, 5) b <- str_sub(ab, -6, -1)
[1] "Gadus" [1] "morhua"

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Combining with str_c()

Args 'sep' for strings of DIFFERENT vectors
StF_C("a", Hbll, Sep — ll<ll)

[1] "a<pb"

Args 'collapse' for strings within the SAME vector
str_c(c("a","b"), collapse = "-")

[1] "a-b"
Both args for doing both (first sep, than collapse applied)
str_c(c("a","b"), C(l,2), sep = "'<'", Collapse = "—")

[1] "a<l-b<2"

The recycling rule also applies here:
str_c("a", 1:10, sep = "_")

[l] " a_l " "a_2 " "a_3 " " a_4 " "a_5 " " a_6 " "a_’7 " " a_8 " "a_9" " a_lO"

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subsetting with str_sub()

x <= c("Shark", "whale", "Ray")
str_sub(string = x, start = 1, end = 3) # extract 1st to 3rd

[1] "Sha" "Wha" "Ray"

str_sub(string = x, end = 1) # extract 1lst

[1] "S" "W" "R"

str_sub(x, —-1) # extract last using negative -index
[1] "k" "e" "y"

Replacing values in each string with str_sub
str_sub(x, 1, 1) <= "A"; x

[1] "Ahark" "Ahale" nAayn

Combine str_sub with str_to_upper

str_sub(x, -1) <- str_to_upper(str_sub(x, -1)); x

a [1] "AharK" "AhalE" "AaY mw
Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Other useful stringr functions (1)

str_sort() and str_order(): sort character vectors using the current locale (= ISO 639
language code)

x <= c("Shark", "whale", "Ray")

str_sort(x) # returns sorted character vector

[1] "Ray" "Shark" "Whale"

str_order(x) # returns index vector of sorted strings

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Other useful stringr functions (2)

str_trim(): removes whitespace from start and end of string
str_trim(" String with trailing and leading white space\t")

[1] "String with trailing and leading white space"

str_pad(): adds single padding character (default is whitespace) (args 'width' indicates the
total string length INCLUDING the existing characters)

str_pad("a", width = 5, side = "both")

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Other useful stringr functions (3)

str_wrap () : wrap strings into formatted paragraphs (based on a specific algorithm)

X <= "This is a wrapper around stri_wrap which implements a wrapping algorithm."
str_wrap(x, width=10)

[1] "This is\na wrapper\naround\nstri wrap\nwhich\nimplements\na wrapping\nalgorithm."

cat(str_wrap(x, width=10))

This is

a wrapper
around
stri wrap
which
implements
a wrapping
algorithm.

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Functions for pattern matching in stringr

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

detect patterns

str_detect(string, pattern)
[1] TRUE TRUE TRUE TRUE

~—
————
o

.

string 1

pattern present?

locate patterns

str_locate(string, pattern)
find starting and end position of first match

start enda

(4] 3
str_locate_all(string, pattern)
find starting and end position of all
matches within each string

string 2 string 4

n stupidity") C"and genius is that“) C"genius has its limits.”)]

[C“The diﬁerence") C“betwee
I

ren, een, gen, gen

string <- ¢("The difference",

pattern <- ,.en”; replacement <- c{"XXX")
[

\
‘= any character

extract* patterns

str_extract(string, pattern)

extract first match, output is a vector

[1] "ren" "een" "gen" "gen"
str_extract_all(string, pattern)

extract all matches within a string, output is a list

str_extract_all(string, pattern, simplify = TRUE)
extract all matches, output is a matrix
str_match(string, pattern)

extract first match + individual character groups
str_match_all(string, pattern)

extract all matches + individual character groups

P e— [)attern ey SRS ——

"between stupidity", "and genius is that", "genius has its limits.")

replace patterns

str_replace(string, pattern, replacement)
replace first match
- a A rry\ a"

str_replace_all(string, pattern, replacement)
replace all matches

["The diffe" |ren ["ce")

split string based on pattern

str_split(string, pattern)
splits each string into before and after pattern, output is a list

Overview of regular expressions

| [[digit:]] or \d
'\D

[[:lower:]]
[[:upper:]]
_ [[:alpha:]]
| [[:alnum:]]

w

W

[[:xdigit:]] or W
[[:blank:]]
[[:space:]] or \s
WS

[[:punct:]]

' [[:graph:]]
[:print:]]
[Lzentrl:]] or e

|
sl
[a-z]

[A..]
()

@ Data analysis with R

Character classes
Digits; [0-9]
Non-digits; [*0-9]
Lower-case letters; [a-z]
Upper-case letters; [A-Z]
Alphabetic characters; [A-z]
Alphanumeric characters [A-z0-9]
Word characters; [A-z0-9_]
Non-word characters
Hexadec. digits; [0-9A-Fa-f]
Space and tab

Space, tab, vertical tab, newline, form feed, carriage
return

Not space; [:space:]]

Punctuation characters; "#8$%8&’()*+,-./:;<=>7
@[_{I}~

Graphical char.; [[:alnum:][:punct:]]
Printable characters; [[:alnum:][:punct:]\s]
Control characters; \n, \r etc.

Character classes and groups
Any character except \n
Or, e.g. (alb)
List permitted characters, e.g. [abc]
Specify character ranges
List excluded characters

Grouping, enables back referencing using \N where '

N is an inte_g_er

Anchors

Start of the string

End of the string

Empty string at either edge of a word
NOT the edge of a word

Beginning of a word

End of a word

Quantifiers

Matches at least 0 times

Matches at least 1 time

Matches at most 1 time; optional string
Matches exactly n times

Matches at least n times

Matches at most n times

Matches between n and m times

Special Metacharacters
New line
Carriage return
\t Tab
W Vertical tab
\f Form feed

Escaping characters:

Metacharacters (. * + etc.) can be used as literal
characters by escaping them. Characters can be escaped
using \\ or by enclosing them in WQ.. \\E.

Adapted from the RegEx cheatsheet by lan Kopacka

https://www.rstudio.com/wp-content/uploads/2016/09/RegExCheatsheet.pdf
https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Some examples: str_detect() (1)

ldentify strings that match a specific pattern:

x <= c("shark", "whale shark", "whale", "manta ray", "sting ray")

Specific pattern using anchors:

str_detect(x, "Mw") # A = start of string

[1] FALSE TRUE TRUE FALSE FALSE

str_detect(x, "y$") # $ = end of string

[1] FALSE FALSE FALSE TRUE TRUE

str_detect(x, "whale") # all strings that contain that word

[1] FALSE TRUE TRUE FALSE FALSE

str_detect(x, "*whale$") # all strings that start end end with this word

f# [1] FALSE FALSE TRUE FALSE FALSE

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Some examples: str_detect() (2)

ldentify strings that match a specific pattern:

x <= c("shark", "whale shark", "whale", "manta ray", "sting ray")

Specific pattern using character classes:

Start with a vowel (same as "“[a,e,i,u,0]")
str_detect(string = x, pattern = ""(ale|i|u|o)™)

[1] FALSE FALSE FALSE FALSE FALSE
End with 'ark' or 'ale'
str_detect(x, pattern = "(ark|ale)s")
.## [1] TRUE TRUE TRUE FALSE FALSE
Contains any character, then 'a', then whitespace
str_detect(x, pattern = ".a ")

[1] FALSE FALSE FALSE TRUE FALSE

" Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Some examples: str_subset()

Subset strings that match a specific pattern using str_detect () for indexing or the wrapper
function str_subset():

x <= c("shark", "whale shark", "whale", "manta ray", "sting ray")

Get all strings in x that start with 'm' or end with 'k'
x[str_detect(x, ""m|ks$")]

"whale shark" "manta ray"

same as
str_subset(x, ""m|ks$'")

[1] "shark" "whale shark" "manta ray"

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Some examples: str_split() (1)

Split a string into pieces based on a specific pattern:

x <= c("shark", "whale shark", "whale", "manta ray", "sting ray")
str_split(x, " ", simplify = TRUE)

[,1] [,2]
"Shark" mww
"whale" "shark"
i "whale™ ™"
"manta" "ray"
"Sting" "ray"
—

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Some examples: str_split() (2)

Split a string into pieces based on a specific pattern:

fruits <- c("apples and oranges and pears and bananas",
"pineapples and mangos and guavas")

str_split(fruits, " and ", simplify = TRUE)

i [,1] [,2] [,3] [,4]
[1,] "apples" "oranges" "pears" "bananas"
[2,] "pineapples" "mangos" "guavas" ""

Specify n to restrict the number of possible matches
str_split(fruits, " and ", n = 2, simplify = TRUE)

[,1] [,2]
[1,] "apples" "oranges and pears and bananas"
[2,] "pineapples" "mangos and guavas"

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

v

stringr provides a dataset (vector) called words, which contains a selection of 980

words:

stringr: :words

"absolute"

i
il
i
i
i
il
i
i
i
il
i
i
i
il
i
i
i
il
i

#i 96
Da#@anﬁ 6%
i 4 06

O W oW-JJdJo oy Ul Ul ™ WWwNN R ——
FoRP o OO OO R O o)

—

ngn
"account"
"actual"
"affect"
"against"
"air"
"already"
"america"
"any™"
"appoint"
"arm"
"ask"
"authority"
"baby"
"ball"
"be"
"become"
"believe"
Hbigll
"bloke"
hébat"

it

"able"
"achieve"
"add"
"afford"
"age"
"all"
"alright"
"amount"
"apart"
"approach"
"around"
"associate"
"available"
"back"
"bank"
"bear"
"bed"
"benefit"
"pbill"
"blood"
"body"

"about"
"across"
"address"
"after"
"agent"
"allow"
"also"
"and"
"apparent"

"appropriate"

"arrange"
"assume"
"aware"
"bad"
"bar"
"beat"
"before"
"best"
"birth"
"blow"

" act "
"admit"

"afternoon"

1) ago w
"almost"

"although"
"another"

"appear"
"area"
"art"
"at"
"away"
"bag"
"base"
"beauty"
"begin"
"bet"
"bit"
"blue"
"both"

"accept"
"active"
"advertise"
"again"
"agree"
"along"
"always"
"answer"
"apply"
"argue"
gt
"attend"
"awful"
"balance"
"basis"
"because"
"behind"
"between"
"black"
"board"
"bother"

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Now tell me,

1. how many words are longer than 10 characters?
2. how many words are exactly 2 letters long?

3. how many words start end with p?

e Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

1. How many of the 3-letter words start with a consonant?

2. How many words contain 'ee' (as in street)?

3. If you subset all words that contain the pattern 'st' and than split these words by this pattern,
how many strings do you get in total?

e Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

You have the following vector x:

X <= c("file_001l.csv", "file_002.csv", "file_003.csv", "file_004.csv", "file_005.cs\
"file_006.csv", "file_007.csv", "file_008.csv", "file_009.csv", "file_010.csv")

1. How can you remove the first 1 or 2 zeros?

2. How could you generate yourself such vector but with 100 elements (“file_1.csv"' ...
"file_100.csVv")?

e Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Solution

1.You could replace first the '_00' by the underscore and then all remaining '_0'
X %>% str_replace("_00", " ") %>% str_replace("_0", "_")

[1] "file 1l.csv" "file 2.csv" "file 3.csv" "file 4.csv" "file 5.csv"

[6] "file 6.csv" "file 7.csv" "file 8.csv" "file 9.csv" "file 10.csv"

2. Simply take advantage of the recycling rule when using str_c()
X <= str_c("file_", 1:100, ".csv", sep = "")
x[1:15]

[1] "file 1l.csv" "file 2.csv" "file 3.csv" "file 4.csv" "file 5.csv"
[6] "file 6.csv" "file 7.csv" "file 8.csv" "file 9.csv" "file 10.csv"

[11] "file 1l.csv" "file 12.csv" "file 13.csv" "file 1l4.csv" "file 15.csv"

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

base functions:
paste(), toupper (), tolower (), nchar(), grep(), gsub()

stringr functions:

str_c(), str_to_upper (), str_to_lower (), str_length(), str_sub()
str_sort(), str_order (), str_trim(), str_pad(), str_wrap()
str_detect(), str_subset(), str_locate(), str_locate_all(),
str_extract(), str_extract_all(), str_match(), str_match_all(),
str_replace(), str_replace_all(), str_split()

Overview of functions you leamed today

How do you feel now.....7

Totally confused?

23uzrg?! $€@@R° " g/;..£
hof),§%4¢;)9=.54" "

F@,9 RRRARRRERRR
RRRROORRRE, ()

Chapter 14 on strings is worth reading with good exercises to practise regular expressions as
well as the website http://www.regular-expressions.info. See also the stringr cheatsheet for a

function overview.

@ Data analysis with R

http://r4ds.had.co.nz/strings.html
http://www.regular-expressions.info/
https://github.com/rstudio/cheatsheets/raw/master/strings.pdf
https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Totally bored?

REEAALLY |'M SO BORED ITS
BORED ALMOST INTERESTING

O

Keep on working on your case study!

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Totally content?

Then go grab a coffee, lean back and enjoy the rest of the day...!

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

UH
iﬁ
(2 Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Thank You

For more information contact me: saskia.otto@uni-hamburg.de

(oc) RN

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License except for the
borrowed and mentioned with proper source: statements.

Image on title and end slide: Section of an infrared satallite image showing the Larsen C ice shelf on the Antarctic

Peninsula - USGS/NASA Landsat: A Crack of Light in the Polar Dark, Landsat 8 - TIRS, June 17, 2017
(under CCO license)

file:///Users/MacDose/Documents/lectures/saskia.otto@uni-hamburg.de
http://www.researchgate.net/profile/Saskia_Otto
http://www.github.com/saskiaotto
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://landsat.visibleearth.nasa.gov/view.php?id=90481

