

UH
.-ﬁ
(23 Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Data Analysis with R

3 - Data structures and basic
calculations

Saskia A. Otto
Postdoctoral Researcher

Data structures

Five data types most often used in data analysis:

DIMENSIONS HOMOGENEOUS HETEROGENEOUS

1d Atomic vector List
2d Matrix Data frame

nd Array

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Lists

e are different from atomic vectors because their elements can be of any type, including lists
e you construct lists by using list() instead of c():

x <- list(1:3, "a", c(TRUE, FALSE, TRUE), c(2.3, 5.9))
str(x)

List of 4
S : int [1:3] 1 2 3
4 : chr "a"

$
S$: logi [1:3] TRUE FALSE TRUE
$

: num [1:2] 2.3 5.9

e ——————————————————

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Lists are vectors

Vectors
Vs

Atomic vectors
el N

Logical

Numeric

Integer
Double

Character

NULL is often used to represent the absence of a vector (as opposed to NA which is used to
represent the absence of a value in a vector). NULL typically behaves like a vector of length 0.

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Why is a list considered a vector?

a N

vector (element_1] (element_2] (element_3] (element 4]
N J

((‘" 4 4 4 R

_ 201 13 37
atomic L\ \ \ \

vectors (" (- - r -
some text here

\. \. \. \.
N

[[“some text“] [201] [c(10, 15) } ﬁist(w, c(ﬂ,1))n

single values vectors lists

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Lists (cont)

e are sometimes called recursive vectors, because a list can contain other lists.

x <= list(list(list(list())))
str(x)

List of 1

S :List of 1

..S5 :List of 1
.. .S : list()

T ——

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Visualization of the following lists

x1 <- list(c(1, 2), c(3, 4))
x2 <- list(list(1, 2), list(3, 4))
x3 <= list(1l, list(2, list(3)))

)
- /

source: R for Data Science by Wickam & Grolemund, 2017 (licensed under CC-BY-NC-ND 3.0 US)

@ Data analysis with R

http://r4ds.had.co.nz/lists.html
https://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Lists (cont)
typeof () alistis a list
you can test for a list with is.1list() and
coerce to a list with as.list()
you can turn a list into an atomic vector with unlist().
if the elements of a list have different types, unlist() uses the same coercion rules as c().

lists are used to build up many of the more complicated data structures in R.

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Structure of lists

A very useful tool for working with lists is str () because it focuses on the structure, not the
content.

x <= list(1i, 2, 3)
str(x)

List of 3
S : num 1
S : num 2

S : num 3
—

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Structure of lists

A very useful tool for working with lists is str () because it focuses on the structure, not the
content.

x <= list(1, 2, 3) x_named <- list(a
str(x) str(x_named)

List of 3 ## List of 3
S : num 1 # S a: num 1
S : num 2 ## S b: num 2

S : num 3 ## S c: num 3
— —

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subsetting

Three ways to subset a list:
1. [extracts a sublist.
2. [[extracts a single component from a list.

3. $ is a shorthand for extracting named elements of a list.

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subsetting (cont)

| will demonstrate each way using the following list:

a <- list(a = 1:3, b = "a string", ¢ = pi, list(-1, -5))
str(a)

List of 4
S a: int [1:3] 1 2 3
$ b: chr "a string"
$ c: num 3.14
S :List of 2
..$: num -1
..$: num -5

S ————————

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subsetting: T’

1. [extracts a sublist. The result will always be a list (it keeps the original list ‘container’ and
removes all elements not selected). Like with vectors, you can subset with a logical, integer,
or character vector.

List of 2
S a: int [1:3] 1 2 3
$ b: chr "a string"

str(a[4])

List of 1

S :List of 2
#HH ..$: num -1
..$: num -5

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subsetting: T’

1. [extracts a sublist. The result will always be a list (it keeps the original list ‘container’ and
removes all elements not selected). Like with vectors, you can subset with a logical, integer,
or character vector.

List of 2
S a: int [1:3] 1 2 3
$ b: chr "a string"

str(a[4])

List of 1

S :List of 2
#HH ..$: num -1
..$: num -5

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subsetting: T 1T

2. [[extracts a single component from a list. It removes a level of hierarchy from the list (=

you remove one ‘container’).
al[4]]

dint [1:3] 1 2 3 ## [[1]]
[1] -1
il

##F [[2]]
[1] -5

T —————————

List of 2
S : num -1
S : num -5

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subsetting: '$’

3.$ is a shorthand for extracting named elements of a list. It works similarly to [[except that
you don't need to use quotes.

same as

a[[llall]]
i

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Some visualization of subsetting lists

all:2]

112(3 1123

“a string” “a string”

3.141525

a[[4]11[1] al[4]]C[1]]

EE) &) G

source: R for Data Science by Wickam & Grolemund, 2017 (licensed under CC-BY-NC-ND 3.0 US)

@ Data analysis with R

http://r4ds.had.co.nz/lists.html
https://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

1. list(a, b, list(c, d), list(e, f))

2. list(list(list(list(list(list(a))))))

o~
0 Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

The following list has been created:

list_example <- list(one = 1:10, two = letters,
three = list(abc = c(132, 876, 42), xyz = c(T,F,F,T,F,T)), four = NULL)

What does the following return? list_example[1:2]
a vector with the first 2 elements of each list
a list of all sublists, each containing only the first 2 elements of the original sublists
a list containing only sublist "one" and "two"

NA

e Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

The following list has been created:

list_example <- list(one = 1:10, two = letters,
three = list(abc = c(132, 876, 42), xyz = c(T,F,F,T,F,T)), four = NULL)

What does the following return? list_example["four"]
NULL
error message
a list containing NULL

a vector with NULL elements

e Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

The following list has been created:

list_example <- list(one = 1:10, two = letters,
three = list(abc = c(132, 876, 42), xyz = c(T,F,F,T,F,T)), four = NULL)

What does the following return? list_example[[1]][2]
a list containing "a"
a list containing 1
a vector containing "b"

a vector containing 2

e Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

The following list has been created:

list_example <- list(one = 1:10, two = letters,
three = list(abc = c(132, 876, 42), xyz = c(T,F,F,T,F,T)), four = NULL)

What does the following return? list_example[3][[2]]

NA

a list containing FALSE
the logical vector 'xyz'
a vector containing "c"

error message

e Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

What is equivalent to the following code (multiple answers correct)? And which of the
options below returns a suprising value?

list_example[["three"]][c("abc", "xyz")]
list_example[[3]][1:2]
list_example[[3]][[1:2]]
list_example[[3]][c("abc", "xyz")]
list_example$three[1:2]

list_example$three[c("abc", "xyz")]

e Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Create a new vector that contains the 4th element of sublist "one" and element 1 and 3 from
sublist "abc" within "three" in 'list_example'.

1. What is the sum of this vector?

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Execute the following R command in your console

Im_list <- lm(Sepal.Length ~ Sepal.Width, data = -iris)

and look at the structure of the list you created with

str(lm_list, max.level = 1) # max.level=1 shows only the first level
of the hierarchy (and not all sub/sub/..lists))

1. What is the last value of the ‘residuals'?

e Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Programming

Other homogeneous data
structures: matrices and arrays

Matrices and arrays

Adding a dim attribute to an atomic vector

allows it to behave like a multi-dimensional

array.

A special case of the array is the matrix,
which has two dimensions. (4,1,1)

2-dimensional

Matrices are used commonly as part of the array = matrix

mathematical machinery of statistics.

Arrays are much rarer, but worth being

aware of.

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Creating matrices

Matrices are created with

e matrix()

e Oor by combining vectors (of equal length) to a matrix using cbind() (stands for column-
binding).

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Creating matrices

Matrices are created with

e matrix()

e Oor by combining vectors (of equal length) to a matrix using cbind() (stands for column-
binding).

a <- matrix(1:6, ncol = 3, nrow = 2) vl <- 1:3
v2 <- 4:6
a <- cbind(vl, v2)

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Attributes length and names

length() and names () have high-dimensional generalisations:

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Attribute length

length() generalises to

e nrow() and ncol() for matrices, and
e dim() for arrays.

length(a)

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Attribute names

names () generalises to

e rownames () and colnames() for matrices, and
e dimnames (), a list of character vectors, for arrays.

Colnames(a) <— C(HAH,HBH)
rownames (a) <- c("a","b","c")
a

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subsetting matrices and arrays

Most common way of subsetting matrices (2d) and arrays (>2d) is a simple generalisation of
1d subsetting:

e You supply a 1d index for each dimension, separated by a comma (integer, logical, or character
indices allowed).

e Blank subsetting is now useful because it lets you keep all rows or all columns.

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subsetting matrices and arrays

Most common way of subsetting matrices (2d) and arrays (>2d) is a simple generalisation of
1d subsetting:

e You supply a 1d index for each dimension, separated by a comma (integer, logical, or character
indices allowed).

e Blank subsetting is now useful because it lets you keep all rows or all columns.

a <- matrix(1:9, nrow = 3) al[l:2, 2]
Colnames(a) <_ C("A", IIBII, HCH) a[, C("A", llCll)]

Guess which values you get!

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subsetting matrices and arrays

Most common way of subsetting matrices (2d) and arrays (>2d) is a simple generalisation of
1d subsetting:

e You supply a 1d index for each dimension, separated by a comma (integer, logical, or character
indices allowed).

e Blank subsetting is now useful because it lets you keep all rows or all columns.

a <- matrix(1:9, nrow = 3)

colnames(a) <- c("A", "B", "C") ## [1] 4 5

a[’ C("A", IICII)]

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subset the following matrix...

(mat <- matrix(c(6,NA,4,18,35,97,7,9,20), nrow = 3))

#i [,1]
[1,] 0
#H [2,] NA
[3,] 4

to get all values in row 1

Clear

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subset the following matrix...

(mat <- matrix(c(6,NA,4,18,35,97,7,9,20), nrow = 3))

#i [,11 [,2]
[1,] 0
#H [2,] NA
[3,] 4

to get all values inrow 1 and 3

Clear

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subset the following matrix...

(mat <- matrix(c(6,NA,4,18,35,97,7,9,20), nrow = 3))

#i [,1]
[1,] 0
#H [2,] NA
[3,] 4

to get all values in column 2

Clear

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subset the following matrix...

(mat <- matrix(c(6,NA,4,18,35,97,7,9,20), nrow = 3))

i [,11 [,2]
i [1,] 0
[2,] NA
[3,1] 4

to get all values in row 2 and 3 and column 1 and 2

Clear

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Programming

Other heterogeneous data
structures: data frames

Data frames

e Most common way of storing data in R.
e Represents a list of equal-length vectors
o — makes it 2-dimensional structure

e Shares properties of both the matrix and the list:

@ Data analysis with R

dataframe

\b\ .

TRUE

1

"

FALSE

9

\X\

TRUE

\§

numeric

character

logical

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

dataframe

Data frames

b’ | |TRUE

e Most common way of storing data in R. 1 'k’ | |FALSE

» Represents a list of equal-length vectors 9 x| [TRUE
\ ‘

numeric character logical

o — makes it 2-dimensional structure

e Shares properties of both the matrix and the list:

o names: has names(), colnames(), and rownames(), although names() and
colnames () are the same thing.

o length: length () is the length of the underlying list and so is the same as ncol(); nrow()
gives the number of rows.

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Generating data frames

You create a data frame using data.frame() (note the point inbetween both words!), which
takes named vectors as input:

df <- data.frame(x = 1:3, y = c("a", "b", "c"))
str(df)

'data.frame': 3 obs. of 2 variables:
S x: int 1 2 3
S y: Factor w/ 3 levels "a","b","c": 1 2 3

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Generating data frames

You create a data frame using data.frame() (note the point inbetween both words!), which
takes named vectors as input:

df <- data.frame(x = 1:3, y = c("a", "b", "c"))
str(df)

'data.frame': 3 obs. of 2 variables:
S x: int 1 2 3
S y: Factor w/ 3 levels "a","b","c": 1 2 3

e Beware of data.frame()s default behaviour, which turns strings into factors. Use
stringsAsFactors = FALSE to suppress this behaviour:

df <- data.frame(x = 1:3, y = c("a", "b", "c"), stringsAsFactors = FALSE)
str(df)

'data.frame': 3 obs. of 2 wvariables:

S x: int 1 2 3
4 $ Ve chr "a" "p" "g"

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subsetting data frames

Either like a matrix (useful if several columns
and rows are selected)

df[1:2, 1] # row 1-2, column 1

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Subsetting data frames

Either like a matrix (useful if several columns Or like a list

and rows are selected)
dfsx # shows all elements of column 'x'

df[1:2, 1] # row 1-2, column 1

df$y[2] # 2nd element of column 'y'

df[[2]]1[2] # same

[l] "

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

that contains

e 4 variables with differet data types (logical, character, double, and/or integer),
e all of length 20 and

e give each variable a name.

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

iris
Explore the following dataset

head(iris, 1)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa

What type of data structure is iris?
list
matrix
array

data frame

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

iris
What are the dimensions of the dataset iris?

5 rows, 150 columns

150 rows, 5 columns

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

iris
Which basic data types does the dataset iris contain?
logical
integer
double
character

factor

date

e Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

iris
1. Calculate the sum of all observations in the dataset using the function sum()

—

™
o Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Programming

The workspace or the global
environment

When you create R objects, you'll see them appear in your environment pane under Global

Environment:

X <-1:10
y <- 1:10
z <- cbind(x,y) # matrix

708:76 _r Workspace and the alobal environment - R Markdown -

Environment History Git

" Import Dataset - &
bal Environment -

List -

int: [1:10, 1:2] 102345 6 7.8 9 10 ..

int [1:10] 1234567 8910
int [1:10] 1 23 456 7 8 9 10

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

The global environment, more often known as the user's workspace, is the first item on the
search path. When a user starts a new session in R, the R system creates a new environment
for objects created during that session.

You can list all objects in the workspace using the function 1s () :

1:10
1:10
cbind(x,y) # matrix

[1] "X" "y" "Z"

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Remove objects from workspace

You can remove an object with rm() :

X <— 4
X
rm(x)

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Remove objects from workspace

You can remove an object with rm () : Or remove all objects in one go:

m Build Debug Profile

X <-4 New Session

X
rm(x)
Terminate R...

Restart R 4 38F10
Restart R and Clear Output
Restart R and Run All Chunks

Set Working Directory

Load Workspace...
Save Workspace As...

Clear Workspace...

Quit Session...

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

str(), [, [[,$,

matrix(), cbind(), nrow(), ncol(), dim, rownames(), colnames(),

dimnames (),

data.frame(), data.frame(stringsAsFactors = FALSE)

Overview of functions you leamed today

How do you feel now.....7

Totally confused?

23uzrg?! $€@@R° " g/;..£
hof),§%4¢;)9=.54" "

F@,9 RRRARRRERRR
RRRROORRRE, ()

Again, try out the online tutorial at Data Camp.

And go over this lecture again and do the quizzes.

@ Data analysis with R

https://campus.datacamp.com/courses/free-introduction-to-r/chapter-1-intro-to-basics-1?ex=1
https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Totally bored?

I'M
Cg:@ REEAALLY
BORED

O

I'M SO BORED ITS
ALMOST INTERESTING

Then try out the following: Calculate for the iris data set
e the mean sepal and petal length per species, and
e the minimum petal width for the species "setose”.

e Which species has the longest sepal width?

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Totally content?

Then go grab a coffee, lean back and enjoy the rest of the day...!

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

UH
iﬁ
(2 Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Thank You

For more information contact me: saskia.otto@uni-hamburg.de

(oc) RN

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License except for the
borrowed and mentioned with proper source: statements.

Image on title and end slide: Section of an infrared satallite image showing the Larsen C ice shelf on the Antarctic

Peninsula - USGS/NASA Landsat: A Crack of Light in the Polar Dark, Landsat 8 - TIRS, June 17, 2017
(under CCO license)

file:///Users/MacDose/Documents/lectures/saskia.otto@uni-hamburg.de
http://www.researchgate.net/profile/Saskia_Otto
http://www.github.com/saskiaotto
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://landsat.visibleearth.nasa.gov/view.php?id=90481

