

UH
.-ﬁ
(23 Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Data Analysis with R

18 - Iteration 2 (purrr and the map
family)

Saskia A. Otto
Postdoctoral Researcher

Loops

e for loops are not as important in R as they are in other languages because R is a functional
programming language.

e |t is possible to wrap up for loops in a function, and call that function instead of using the for
loop directly.

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Consider (again) this simple data frame:

set.seed(1)
data.frame(

Fnoam(20), From loops to functional programming
rnoxm(20) ;

L
y 4

8
output <- vector("double", length(df))
for (i in seq.alang(df)) {
output[[i]] <- mean(df[[i]])
}
output
[1] 0.190523876 -0.006471519 0.138796773

8 -

col mean <- function(df) {
output <- vector("double", length(df))
for (i in sed along(df)) {
output[i] <- mean(df[[i]])
}

output

col median <- function(df) {... }
gol _sd <- function(df) {... }

col_summary <- function(df, fun) {
out <- vector("double", length(df))
for (i in seq.along(df)) {
out[i] <- fun(df[[i]])
SOLUTION: Generalize }
your function and include out
the function for the }
statistic as an argument golosupmaryics, Meek)
FEAn: | 0.190523876 ..-:.:-_ 6
col summary(df, median)
i

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

A

Functional programming with purrr @

e As you have seen, passing a function to another function is extremely handy, reduces potential
bugs (much less code and copy and pasting), and makes it easy to generalise

The apply family of functions in base R (apply(), lapply(), sapply(), vapply(),
tapply (), mapply()) does exactly that: Thes functions act on an input list, vector, dataframe,
matrix or array, and apply a named function with one or several optional arguments.

The map family of functions provided by the tidyverse packages purrr operates similar but can
be faster (all functions written in C++), is more consistent, well integrated in the tidyverse
concept and easier to learn.

purrr provides in addition many more useful functions for handling lists; to have an overview of
available functions see the cheatsheet

@ Data analysis with R

https://github.com/tidyverse/purrr
https://github.com/rstudio/cheatsheets/raw/master/purrr.pdf
https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

The most basic function: map()

for each element of .x do .f

P # B

map(.x, .f,)J always

returns a list

\

the data the function additional
vector character vector arguments
list integer vector required for the

data frame or formula function
tibble

(for each column)

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

The most basic function: map()

Using our previous example:

set.seed(1) map (df, mean)

df <- data.frame(s
X

rnorm(20) , ## [1] 0.1905239
rnorm(20), #i

rnorm(20) # Sy
[1] -0.006471519
#4#

_ ## Sz
map () always preserves the list names. 4% [1] 0.1387968

T ————————————————————————

You can also use the pipe operator
df %>% map(median)

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

The ... argument

Here you specify all other arguments which can be specified in the function used:

map (df, quantile, probs = ¢c(0,0.5,1.0))

Sx
0% 50% 100%
-2.2146999 0.3596755 1.5952808

Sy
0% 50% 100%
-1.98935170 -0.05496689 1.35867955

Sz
0% 50% 100%
-1.1293631 0.1143867 1.9803999

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Other types of output than a list

map_lgl() — returns a logical vector
map_int() — returns an integer vector
map_dbl() — returns a double vector

map_chr () — returns a character vector

The length of the returned vector and .x are always the same!

To get the means of x, y and z as vector replace map () with the appropriate function:
map_dbl(df, mean)

#i# x y %
0.190523876 -0.006471519 0.138796773

. |

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Other types of output than a list

You can always generate a vector of a more general data type but not the opposite

map_int(df, mean)

Error: Can't coerce element 1 from a double to a integer

map_chr (df, mean)

#¥# x y 7
"0.190524" "-0.006472" "0.138797"

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Load the following R datafile, which contains the list groundsharks:

load("data/fishbase_sharks.R")
1s()

[1] "groundsharks"

This list contains data for 284 groundshark species (Carcharhiniformes, the largest
order of sharks) downloaded from fishbase. The list has a hierarchical structure with
one list per species containing individual sublists for each information.

e Data analysis with R

file:///Users/MacDose/Documents/lectures/www.fishbase.org
https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Answer the following questions

1. How many elements are in groundsharks?

2. What is the first species listed in groundsharks? What information is given for this
species?

3. What is the difference between groundsharks[1] and groundsharks[[1]]7

(Answers are on the next slide)

e Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

length(groundsharks[[1]])

i
i
i
il
i
i
i
il
i
i
i
il
i
i
i
i
i
i
i
il

i

7
[40
[43
[4
[49
[52
[55
[58
[61

"sciname"
"SpeciesRefNo"
"PicPreferredName"
"PicPreferredNameJ"
"GenCode"

"Source"
"TaxIssue"
"Saltwater"
"MigratRef"
"DepthRangeRef"
"DepthComRef"
"LongevityCaptive"
"Length"
"LTypeMaxF"
"LTypeComM"
"CommonLengthRef"
"MaxWeightRef"
"LarvabPic"
"Importance"
"Remarks/"
"MainCatchingMethod"

h@a pnags wiihets"

[67]

"MSpears"

"Genus"

"Author"
"PicPreferredNameM"
"FamCode"
"SubGenCode"
"AuthorRef"

"Fresh"
"DemersPelag"
"DepthRangeShallow"

"DepthRangeComShallow"

"LongevityWild"
"LongevityCapRef"
"LTypeMaxM"
"MaxLengthRef"
"CommonLengthFE™"
"Weight"

"pPic"

"EggPic"
"PriceCateg"
"LandingStatistics"
nITn

"MCastnets"
"MTrawls"

"Species"

"FBname"
"PicPreferredNameF"
"Subfamily"
"BodyShapelI"
"Remark"

"Brack"

"AnaCat"
"DepthRangeDeep"
"DepthRangeComDeep"
"LongevityWildRef"
"Vulnerability"
"LengthFemale"
"CommonLength"
"LTypeComE™
"WeightFemale"
"PictureFemale"
"ImportanceRef"
"PriceReliability"
"Landings"
"MSeines"

"MTraps"
"MDredges"

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

(this information is stored in LongevityWild)

1. Do it for one element
2. Turn it into a recipe

3. Use map () to do it for all elements

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

1. What is the longevity for the blacknose shark (the first species in the list)?

e Solve the problem for one element

\‘-

(g.m.un.ds.ha;.]g,s_[[1]]SLongevityWild /}

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

2. Turn it into a receipe
o Make it a formula

e Use .x as a pronoun

’:'_.'
a formula

@ Data analysis with R

.x$LongevityWild

"
.
"
.

one element of our
vector

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

3. Do it for all elements

e Your recipe is the second argument to map

map (groundsharks, ~.xSLongevityWild))

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

=N
u Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Solution: What is the mean longevity in the wild across all shark
and ray species?

Applying a mean to a list is difficult & use map_dbl() to get a vector returned:

map_dbl(groundsharks, ~ .x$LongevityWild) %>% mean(na.rm = TRUE)

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

.f can be aformula

map_int(groundsharks, ~ length(.x)) %>% head()

[1] 99 99 99 99 99 99

map_chr (groundsharks, ~ .x[["FBname"]]) %>% head()

"Blacknose shark" "Silvertip shark" "Bignose shark"
"Graceful shark" "Blacktail reef shark" "Pigeye shark"

map_chr (groundsharks, ~ .x$FBname) %>% head()

"Blacknose shark" "Silvertip shark" "Bignose shark"
"Graceful shark" "Blacktail reef shark" "Pigeye shark"

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

. f can be a string or integer

e For each element, extract the named or numbered element.

C map(.x, ~ .X[["some name"]])

equivalent to

.f = "some name")]

map_chr (groundsharks, .f = "FBname")

use an integer to select elements by position:
map (groundsharks, 97)

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

. f can be a function

e For each element, extract the named or numbered element.

C map(.x, .f some_function, ...))

equivalent to

C map(.x, ~ some_function(.x, ...)))

gets passed on to .f

df, .f = mean, na.rm
df, ~ mean(.x, na.rm

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Combining map functions

How long is each species name?

1. Extract the scientific species name

char_species <- map(groundsharks, "sciname')

2. Get the length of the name (= number of characters)
map_int(char_species, str_length) %>% head()

C## [1] 22 27 20 29 26 24
Piping both map functions
map (groundsharks, '"sciname'") %>% map_int(str_length) %>%
[1]1 22 27 20 29 26 24
Now in one go
map_int(groundsharks, ~ str_length(.x[["sciname'"]])) %>%

C##F [1] 22 27 20 29 26 24

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

set_names()

is a useful function for extracting information from sublists and using this to set the names of
another list.

e Example: Get the corresponding scientific name to each length value:

First extract the length values ...
map_dbl(groundsharks, .f = "Length") %>%
...and give it the names from sciname
set_names (map_chr(groundsharks, .f = "sciname")) %>% head()

Carcharhinus acronotus Carcharhinus albimarginatus

200 300

Carcharhinus altimus Carcharhinus amblyrhynchoides

300 16l

Carcharhinus amblyrhynchos Carcharhinus amboinensis
255 280

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

1. Which species has the highest weight?
2. Which species has the lowest vulnerability score?
3. Which species swims deepest?

4. Which species do we know the least about (i.e. have the most NA entries)?

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Solutions 1 + 2

Species with the highest weight

map_dbl(groundsharks, .f = "Weight") %>%
set_names (map_chr (groundsharks, .f = "FBname')) %>%
sort() %>% tail(n = 1)

Tiger shark
#i 807400

Species with the lowest vulnerability score

map_dbl(groundsharks, .f = "Vulnerability") %>%
set_names (map_chr(groundsharks, .f = "FBname')) %>%
sort() %>% head(n = 1)

Pygmy ribbontail catshark
i 12.55

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Solutions 3+4

Species that swims deepest

map_dbl(groundsharks, .f = "DepthRangeDeep'") 2%>%
set_names (map_chr (groundsharks, .f = "FBname')) %>%
sort() %>% tail(n = 1)

Silky shark
4000

Species we know least about

map_int(groundsharks, ~ sum(is.na(.x))) %>%
set_names (map_chr(groundsharks, .f = "sciname")) %>%
sort() %>% tail(n = 1)

Haploblepharus kistnasamyi
i 60

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Mapping over 2 arguments: map2()

for each element of .x AND the
corresponding .y element apply .f

always
returns a list

rep("a", 1)
rep("b", 2)
rep(ncu’ 3)

e map2() applies a function to PAIRS of elements from two lists, vectors, etc.

e to get a vector returned: map2_1gl(), map2_int(), map2_dbl(), map2_chr ()

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Mapping over 2 arguments: map2()

map2(.x = c("a","b","c"), .y = c(1,2,3), .f = rep)

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Mapping over multiple arguments: pmap()

to each element of each vector in .l, apply .f

~.

pmap ke £y ...)] etume a s

v

the data: a list of vectors, lists,
data frames or tibbles (for each column)

e pmap() applies a function to GROUPS of elements FROM a LIST of lists, vectors, etc.

e NO corresponding pmap_1lgl(), pmap_int(), etc.

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Mapping over multiple arguments: pmap()
Example: sample from these 3 vectors 2, 10, or 5 times with or without replacement
arg_list <- list(x = list(a = 1:10, b = 1:5, ¢ = 1:20), size = c(2, 10, 5),

repl = c(FALSE, TRUE, FALSE))
pmap(.l = arg_list, .f = sample)

3143322331

Sc
[1] 1 13 17 11 9

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

One more step in complexity:

Invoking different functions with invoke_map ()

As well as varying the arguments to the function you might also vary the function itself.
Example: Apply the mean, median and sd to a single vector or to a list:

Single vector # List
invoke_map(.f = list(mean, median, sd), params <- list(alist(x= 1:15),
1:10) list(x=200:400), list(x=1:4))

invoke_map_dbl(.f = list(mean, median,
sd), .x = params)

[1] 8.000000 300.000000 1.290994

3.02765

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Other mapping functions
invoke (),
lmap (),

imap (),

walk(), walk2(), pwalk() for side effects (returns input invisibly)

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Write a function to fit a linear model to each data.frame (column x vs column y) and plot the
slopes as histogram. You can use multiple files ("ex_final_multifile_1.csv",

"ex_final_multifile_2.csv", ...) or a single file ("ex_final_one_file.csv") to solve this....

e import "dummyfile_1.csv" - "dummyfile_100.csv" so that you have one data list
e apply the linear model to each dataframe using one of the map functions

e extract the slopes and create a histogram

e Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Solution

files <- str_c("data/functions/dummyfile_", 1:100, ".csv")
data_list <- map(files, read_csv)

data_list <- map2(.x = data_list, .y = as.character(1:100), ~ mutate(.x, dataset = .y))

map (data_list, ~ lm(y ~ x, data = .x)) %>%
map_dbl(~ coef(.x)[2]) %>%
hist(main = "Distributions of slopes")

Distributions of slopes

Frequency

] —

o 070 075 080 085 090 095 1.00
Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

list-columns
o Data frames are a extremely handy data structure for data analysis:
o they are more clearly structured than a list (similar to a matrix)
o but they can contain different data types (which the matrix cannot)

o being a hybrid between a list and matrix allows a very flexible usage, e.g. dataframes can
be indexed like a list or a matrixs

We typically regard data frames a container for several atomic vectors of the same or different
data type with a common length.

But data frames are even more flexible! They can contain all vector types, that includes list
(recall. atomic vectors and lists represent together vectors!)

Such list in a data frame are called list-columns

You can even store individual ggplot objects in list-columns!

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

list-columns

e Tibbles are particularly good in handling and visualizing list-columns:

A tibble: 100 x 2

dataset data

<chr> <list>

1 1 <tibble [100 x 21>
2 2 <tibble [100 x 2]>
... with 98 more rows

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

How to make a dataframe with list-columns

e Use tidyr::nest() to create a nested dataframe in which individual tables are stored within
the cells of a larger table.

o Use a 2-step approach: first group the data, then create the nested data with one row per group
level.

First convert data list into a tibble = 1 ¥
14.0152. 12.377871

df <- data_list %>% bind_rows() 9.678761 5.088609
9.554244 7.653369

2-step approach 6.678183 14.888314
df nested <- df %>% 14.393417 13.179765

group_by (dataset) %>% dataset data 15303135 14.920281

nest() 001 <tibble[100x2]> df_nested$data[[1]]
002 <tibble [100 x 2]>

X y
. df nested 13.195665 8.481744
8.508041 11.191721
7.374913 5.893479
11743586 9.561921
11.293704 16.014923

11.753833 10.883631 | list 2 in column
Sdata
df_nested$data[[2]] -

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Map data-frames to the modeling function

e Nested data frames are useful when you want to preserve the relationships between
observations and subsets of data.

e You can manipulate many sub-tables at once with the purrr mapping functions and save results
as list-column in the same dataset:

model_nested <- df_nested %>%
mutate(model = map(data, ~lm(y ~ x, data = .))) %%
print(n = 2)

A tibble: 100 x 3

dataset data model

#4# <chr> <list> <list>
1 1 <tibble [100 x 2]> <S3: 1lm>
2 2 <tibble [100 x 2]> <S3: 1m>
... with 98 more rows

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Extract some summary statistics using piped operations

stats_nested <- model_nested %>%

mutate (

alpha = map(model, coef) %>% # returns list-column with intercept/slope vector
map_dbl(~ .[1]), # extract first element of each vector (same as ~ .x[1])

alternatively, in one go:
beta = map_dbl(model, ~ coef(.x)[2]),
r_sq = map(model, summary) %>% map_dbl(~.$r.squared)

) %>%

print(n = 2)

A tibble: 100 x 6
dataset data model alpha beta r sqg
<chr> <list> <list> <dbl> <dbl> <dbl>
11 <tibble [100 x 2]> <S3: 1m> 3.12 0.794 0.668
2 2 <tibble [100 x 2]> <S3: 1m> 2.64 0.800 0.701
. with 98 more rows

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Use map2() to make the predictions

predict_nested <- stats_nested %>%
mutate(pred = map2(.x = model, .y = data, .f = predict)) %>%
print(n = 2)

A tibble: 100 x 7

dataset data model alpha beta r sqg pred

<chr> <list> <list> <dbl> <dbl> <dbl> <list>
11 <tibble [100 x 2]> <S3: Im> 3.12 0.794 0.668 <dbl [100]>
2 2 <tibble [100 x 2]> <S3: Im> 2.64 0.800 0.701 <dbl [100]>
id

. with 98 more rows

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Visualize the predictions

— You need to get out of the nested data structure: tidyr::unnest()

e unnest() makes each element of the list its own row,
e but the list-columns have to be either atomic vectors or data frames!

predict_unnested <- predict_nested %>% :
e Each regular column is repeated one for

unnest(pred) %>% _ .
each row in the nested list-column.

print(n = 2)

A tibble: 10,000 x 5 e Using only pred in unnest() will omit the
dataset alpha Dbeta «r sgq pred - '
<chr> <dbl> <dbl> <dbl> <dbl> data list-column!
11 3.12 0.794 0.668 14.3
21 3.12 0.794 0.668 10.8
. with 9,998 more rows

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Visualize the predictions

e You can also unnest multiple columns simultaneously:

predict_unnested <- predict_nested %>%
unnest(data, pred) %>%
print(n = 2)

A tibble: 10,000 x 7
dataset alpha Dbeta «r sq pred X %
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

3.12 0.794 0.668 14.3 14.0 12.4

11
#H 2 1 3.12 0.794 0.668 10.8 9.68 5.09
#

#H ... with 9,998 more rows
—

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Visualize the predictions

e Now that we have a regular tibble, we can plot the predictions.

predict_unnested %>%
ggplot(aes(x, pred)) +
geom_line(aes(group = dataset), alpha = 0.3) +
geom_smooth(se = FALSE)

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Restructure the dataset to create a nested data frame grouped by species.
Apply purrr's mapping function to model the species CPUE as a function of latitude.
Save the models and summary statistics in the same nested dataframe.

Generate ggplots with the predicted CPUE ~ lat per species and save these in a list-
column.

Identify the species where the CPUE is best explained by latitude and look at the
prediction plot.

e Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

purrr functions:
map (), map_1lgl(), map_int(), map_dbl(), map_chr()

set_names ()

map2 (), map2_1lgl(), map2_int(), map2_dbl(), map2_chr ()
pmap (), invoke_map (), invoke_map_db1l()

invoke (), lmap(), imap(), walk(), walk2(), pwalk()

tidyr functions:

nest(), unnest()

Overview of functions you leamed today

How do you feel now.....7

Totally confused?

23uzre?l §¢@R° 7§/,
hbf,§%46:)9=.5
7:@,9 RRRARRRERRR.
RRRROORRRE ()

purrr provides any more useful functions for handling lists; see for more information

o the cheatsheet
e chapter 21 on iterations in R for Data Science

e a good tutorial for purr is also available on this webpage: https://jennybc.github.io/purrr-tutorial/

@ Data analysis with R

https://github.com/rstudio/cheatsheets/raw/master/purrr.pdf
http://r4ds.had.co.nz/iteration.html
https://jennybc.github.io/purrr-tutorial/
https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Totally bored?

REEAALLY |'M SO BORED ITS
BORED ALMOST INTERESTING

O

Then apply more of the map functions to your second case study!

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Totally content?

Then go grab a coffee, lean back and enjoy the rest of the day...!

@ Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

UH
iﬁ
(2 Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Thank You

For more information contact me: saskia.otto@uni-hamburg.de

(oc) RN

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License except for the
borrowed and mentioned with proper source: statements.

Image on title and end slide: Section of an infrared satallite image showing the Larsen C ice shelf on the Antarctic

Peninsula - USGS/NASA Landsat: A Crack of Light in the Polar Dark, Landsat 8 - TIRS, June 17, 2017
(under CCO license)

file:///Users/MacDose/Documents/lectures/saskia.otto@uni-hamburg.de
http://www.researchgate.net/profile/Saskia_Otto
http://www.github.com/saskiaotto
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://landsat.visibleearth.nasa.gov/view.php?id=90481

