

Data Analysis with R
2 - Basics in R

Saskia A. Otto
Postdoctoral Researcher

Basic data types in R

3/65

Some of the most basic types are:
Decimals values like 4.5 are called doubles.

Natural numbers like 4 are called integers. Integers and doubles are both called numerics.

Boolean values (TRUE or FALSE) are called logical.

Text (or string) values are called characters.

4/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Some of the most basic types are:
Decimals values like 4.5 are called doubles.

Natural numbers like 4 are called integers. Integers and doubles are both called numerics.

Boolean values (TRUE or FALSE) are called logical.

Text (or string) values are called characters.

my_double <- 42.5
my_integer <- 5
With the L suffix, you get an integer rather than a double
my_integer_correct <- 5L

my_logical <- TRUE
my_character <- "some text"
Note how the quotation marks on the right indicate that "some text" is a character.

5/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Whats the data type
To determine the (R internal) type or storage mode of any object or variable use the function
typeof()

typeof(my_double)

[1] "double"

typeof(my_integer)

[1] "double"

typeof(my_integer_correct)

[1] "integer"

6/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Test types
You can check if an object is of a specific type with an 'is.' function:

int_var <- 10L
is.integer(int_var)

[1] TRUE

dbl_var <- 4.5
is.double(dbl_var)

[1] TRUE

7/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Test types (cont)
Overview of 'is.' functions

FUNCTION LGL INT DBL NUM CHR
is.logical() x
is.integer() x
is.double() x
is.numeric() x x x
is.character() x

8/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Missing values
Missing values are specified with NA

NA will always be coerced to the correct type if used inside a vector, or you can create NAs of a
specific type with:

NA # logical
NA_integer_ # integer
NA_real_ # double
NA_character_ # character

You can check also for missing values with is.na()

x <- NA
is.na(x)

[1] TRUE

9/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Data structures
R’s base data structures can be organised by their dimensionality (1d, 2d, or nd) and whether
they’re homogeneous (all contents must be of the same type) or heterogeneous (the contents
can be of different types). This gives rise to the five data types most often used in data
analysis:

DIMENSIONS HOMOGENEOUS HETEROGENEOUS
1d Atomic vector List
2d Matrix Data frame
nd Array

10/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

The most basic structure: atomic
vectors

11/65

Atomic vectors
are usually created with c() , short for combine:

dbl_var <- c(1, 2.5, 4.5)
Use TRUE and FALSE (or T and F) to create logical vectors
log_var <- c(TRUE, FALSE, T, F)
chr_var <- c("these are", "some strings")

12/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Atomic vectors
are usually created with c() , short for combine:

dbl_var <- c(1, 2.5, 4.5)
Use TRUE and FALSE (or T and F) to create logical vectors
log_var <- c(TRUE, FALSE, T, F)
chr_var <- c("these are", "some strings")

or with seq() (= sequence)

seq(from = 0, to = 1, by = 0.2)

[1] 0.0 0.2 0.4 0.6 0.8 1.0

or rep()(= repeat)

rep("a", times = 5)

[1] "a" "a" "a" "a" "a"

13/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Atomic vectors
are always flat, even if you nest c() ’s:

c(1, c(2, c(3, 4)))

[1] 1 2 3 4

the same as
c(1, 2, 3, 4)

[1] 1 2 3 4

14/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Hierarchy of data types in atomic vectors

15/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Vector properties
1. Its type, which you can determine with typeof() .

2. Its length, which you can determine with length() .

3. Additional metadata in the form of attributes.

16/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Vector properties
1. Its type, which you can determine with typeof() .

2. Its length, which you can determine with length() .

3. Additional metadata in the form of attributes.

typeof(1:10)

[1] "integer"

x <- c(200, 50, 40, 1, 100, 20)
length(x)

[1] 6

17/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Important tools for working with vectors
1. How to convert from one type to another, and when that happens automatically?

2. What happens when you work with vectors of different lengths?

3. How to name the elements of a vector?

4. How to pull out elements of interest?

18/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

1. Coercion
All elements of an atomic vector must be the same type

Different types will be coerced to the most flexible type

Types from least to most flexible are:

logical < integer < double < character

19/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

1. Coercion

For example, combining a character and an integer yields a character:

All elements of an atomic vector must be the same type

Different types will be coerced to the most flexible type

Types from least to most flexible are:

logical < integer < double < character

str(c("a", 1))

chr [1:2] "a" "1"

20/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

1. Coercion (cont)
When a logical vector is coerced to an integer or double, TRUE becomes 1 and FALSE
becomes 0. This is very useful in conjunction with sum() and mean()

x <- c(FALSE, FALSE, TRUE)
as.numeric(x)

[1] 0 0 1

Total number of TRUEs
sum(x)

[1] 1

21/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Your turn...

22/65

Quiz 1: Coercion rules

Test your knowledge of vector coercion rules by predicting the output of the following uses
of c() :

c(1, FALSE)

logical vector

integer vector

double vector

character vector

NA

error message

Submit Show Hint Show Answer Clear

23/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Quiz 2: Coercion rules

Test your knowledge of vector coercion rules by predicting the output of the following uses
of c() :

c("a", 1)

logical vector

integer vector

double vector

character vector

NA

error message

Submit Show Hint Show Answer Clear

24/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Quiz 3: Coercion rules

Test your knowledge of vector coercion rules by predicting the output of the following uses
of c() :

c(TRUE, 1L)

logical vector

integer vector

double vector

character vector

NA

error message

Submit Show Hint Show Answer Clear

25/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Quiz 4: Coercion rules

x <- c(TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, FALSE)

1. What would be the result if you sum up all elements of x?

Submit Show Hint Show Answer Clear

26/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Quiz 5 - Challenge: Coercion rules

Type the following into the R console (or run it in your script), which will create a long vector
containing a random number of NAs.

1. How many NAs are in x?

Submit Show Hint Show Answer Clear

x <- 1:10000
set.seed(123) # so we get all the same results
y <- sample(1:10000, 1) # random number of NAs
z <- sample(1:10000, y) # randomly assign positions of the y NAs
x[z] <- NA # place NAs on the positions in z

27/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

2. Recycling rules
As well as implicitly coercing the types of vectors to be compatible, R will also implicitly coerce
the length of vectors. This is called vector recycling, because the shorter vector is repeated,
or recycled, to the same length as the longer vector.

1:10 + 100

[1] 101 102 103 104 105 106 107 108 109 110

What will happen with this summation?
1:10 + 1:2

28/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

2. Recycling rules
As well as implicitly coercing the types of vectors to be compatible, R will also implicitly coerce
the length of vectors. This is called vector recycling, because the shorter vector is repeated,
or recycled, to the same length as the longer vector.

1:10 + 100

[1] 101 102 103 104 105 106 107 108 109 110

What will happen with this summation?
1:10 + 1:2

[1] 2 4 4 6 6 8 8 10 10 12

29/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Your turn...

30/65

Quiz 6: Recycling rules

What happens when you do the following calculation?

the output will be a vector of length 3

the output will be a vector of length 5, last element is 1500

the output will be a vector of length 3, last element is 75

the output will be a vector of length 3, last element is NA

Submit Show Hint Show Answer Clear

a <- c(10, 5, 100)
b <- 1:5
(a*b)*3

31/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

3. Naming vectors
All types of vectors can be named. You can name them during creation with c() :

Or afterwards by using the function names()

c(a = 1, b = 2, c = 4)

a b c
1 2 4

x <- c(1,5,3)
names(x) <- c("a", "b", "c")
x

a b c
1 5 3

32/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

4. Subsetting
[is the subsetting function, and is called like x[a] .

There are 4 ways to subset a vector:

1. Using a numeric vector containing only integers

2. Subsetting with a logical vector

3. Using a named vector

4. Using nothing

33/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

1.Using a numeric vector containing only integers.

x <- c("one", "two", "three", "four", "five")
positive integers keep elements at position:
x[c(5, 1, 3)]

[1] "five" "one" "three"

34/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

1.Using a numeric vector containing only integers.

x <- c("one", "two", "three", "four", "five")
positive integers keep elements at position:
x[c(5, 1, 3)]

[1] "five" "one" "three"

repeating integers make vectors longer:
x[c(1,1,1,1,2,2,2,2,3,3,3,4,4,5,5)]

[1] "one" "one" "one" "one" "two" "two" "two" "two"
[9] "three" "three" "three" "four" "four" "five" "five"

35/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

1.Using a numeric vector containing only integers.

x <- c("one", "two", "three", "four", "five")
positive integers keep elements at position:
x[c(5, 1, 3)]

[1] "five" "one" "three"

repeating integers make vector longer:
x[c(1,1,1,1,2,2,2,2,3,3,3,4,4,5,5)]

[1] "one" "one" "one" "one" "two" "two" "two" "two"
[9] "three" "three" "three" "four" "four" "five" "five"

negative integers remove elements:
x[c(-3,-5)]

[1] "one" "two" "four"

36/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

1.Using a numeric vector containing only integers.

but you cannot mix
x[c(1,2,-5)] # --> gives error message

Using zero
x[0] # --> returns an empty vector

character(0)

37/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

2.Subsetting with a logical vector keeps all values corresponding to a TRUE value. This is most
often useful in conjunction with the comparison functions.

x <- c(10, 3, NA, 5, 8, 1, NA)

All non-missing values of x
b <- is.na(x)
x[!b] # the ! reverses the TRUE/FALSE values

[1] 10 3 5 8 1

All even (or missing!) values of x
x[x %% 2 == 0]

[1] 10 NA 8 NA

38/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

3.If you have a named vector, you can subset it with a character vector:

x <- c(abc = 1, def = 2, xyz = 5)
x[c("xyz", "def")]

xyz def
5 2

you can also duplicate elements
x[c("xyz", "def", "def")]

xyz def def
5 2 2

39/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

4.Using nothing returns the original vector. More important for other data structures

x[]

abc def xyz
1 2 5

40/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Your turn...

41/65

Quiz 7: Subsetting

A vector x has been created by drawing 20 numbers randomly from 1 to 1000:

Try it out yourself and answer the following 3 questions:

1. Which number does the 5th element of the vector x have?

2. What is the sum of the first 4 elements of x?

3. What is the sum if the 3rd and 15th element are excluded?

Submit Show Hint Show Answer Clear

set.seed(1) # (= state of the Random Number Generator set to 1)
x <- sample(1:1000, 20)

42/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Quiz 8: Subsetting

What happens when you subset with a positive integer that’s bigger than the length of the
vector?

error message returned

nothing happens

the vector gets recycled (e.g. returns 2nd element if vector length is 10 and index value is a
12)

NA returned

Submit Show Hint Show Answer Clear

43/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Quiz 9: Subsetting

What happens when you subset with a name that doesn’t exist?

error message returned

nothing happens

the vector gets recycled (e.g. returns 2nd element if vector length is 10 and index value is a
12)

NA returned

Submit Show Hint Show Answer Clear

44/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Attributes
All objects can have arbitrary additional attributes, used to store metadata about the object.

Attributes can be thought of as a named list (with unique names).

Attributes can be accessed individually with attr() or all at once (as a list) with
attributes() .

45/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Attributes
All objects can have arbitrary additional attributes, used to store metadata about the object.

Attributes can be thought of as a named list (with unique names).

Attributes can be set and accessed individually with attr() or all at once with attributes() .

temp <- c(17.4, 18.3, 20.8, 16.9, 28.1)

this metadata is typically written in the header in Excel or in an extra
spreadsheet, but can be put as attributes into R:
attr(temp, "unit") <- "°C"
attr(temp, "samplinginfo") <- "surface temperature (0.5m depth), measured with CTD"
attributes(temp)

$unit
[1] "°C"

$samplinginfo
[1] "surface temperature (0.5m depth), measured with CTD"

46/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Attributes (cont)
The three most important attributes are:

Names, a character vector giving each element a name.

Dimensions, used to turn vectors into matrices and arrays.

Class, used to implement the S3 object system.

47/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Attributes (cont)

Each of these attributes has a specific accessor function to get and set values:

The three most important attributes are:

Names, a character vector giving each element a name.

Dimensions, used to turn vectors into matrices and arrays.

Class, used to implement the S3 object system.

names(x)

length(x) (for 1-dimensional structures: vectors, list) otherwise dim(x)

class(x)

48/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Attributes (cont)
The attribute names and other attributes that you set manually will always appear when you
look at the content of your vector:

add stationnames
names(temp) <- c("st_03", "st_11", "st_17", "st_21", "st_25")
temp

st_03 st_11 st_17 st_21 st_25
17.4 18.3 20.8 16.9 28.1
attr(,"unit")
[1] "°C"
attr(,"samplinginfo")
[1] "surface temperature (0.5m depth), measured with CTD"

49/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Attributes (cont)
These attributes are only visible when you call them explicitly:

length(temp)

[1] 5

class(temp)

[1] "numeric"

50/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Factors
One important use of attributes is to define factors. Factors are

vectors that can contain only predefined values,

used to store categorical data,

built on top of integer vectors using two attributes:

for more on factors see lecture 10

the class, “factor”, which makes them behave differently from regular integer vectors,

and the levels, which defines the set of allowed values.

51/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Factors (cont)
biomass <- factor(c("low", "medium", "low", "high", "medium"))
biomass

[1] low medium low high medium
Levels: high low medium

class(biomass)

[1] "factor"

levels(biomass) # shown in alphabetic order if not specified

[1] "high" "low" "medium"

52/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Vectorized operations in R

53/65

Basic calculation example

Why 4 values???

a <- c(1,2,3,4)
c <- (a + sqrt(a))/(exp(2)+1)
c

[1] 0.2384058 0.4069842 0.5640743 0.7152175

54/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Vectorized calculations
R calculations are vectorized, that means certain calculations are done with each element of
a vector.

55/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Vectorized calculations
R calculations are vectorized, that means certain calculations are done with each element of
a vector.

Guess...

a <- c(1,2,3,4)
b <- 10

a + b
a * b

56/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Vectorized calculations
R calculations are vectorized, that means certain calculations are done with each element of
a vector.

Guess...

a <- c(1,2,3,4)
b <- 10 # b gets recycled to the length of a

a + b # = a[1] + b[1], a[2] + b["2"], a[3] + b["3"], a[4] + b["4"]

[1] 11 12 13 14

a * b # = a[1] * b[1], ...

[1] 10 20 30 40

57/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Your turn...

58/65

Quiz 10: Total Sums of Squares

Calculate for the following vector

the sum, over all observations, of squared deviation of each observation from the overall
mean.

1. Write the result in the following box and compare

Submit Show Hint Show Answer Clear

∑n

i=1
(−)xi xˉ

2

set.seed(1)
x <- sample(1:20, 20, replace = TRUE)

59/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

c() , typeof() , length() , is.logical() , as.logical() , is.integer() ,
as.integer() , is.double() , as.double() , is.numeric() , as.numeric() ,
is.character() , as.character() , str() ,

names() , [] , is.na() , set.seed() , sample() , attr() , attributes() , dim() ,
class() ,

factor() , levels() ,

+ , - , * , / , ^ , sqrt() , exp()

Overview of functions you learned today

60/65

How do you feel now.....?

61/65

Totally confused?

Try out the online tutorial at Data Camp

62/65Data analysis with R

https://campus.datacamp.com/courses/free-introduction-to-r/chapter-1-intro-to-basics-1?ex=1
https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Totally bored?

Don't worry! Soon you won't be bored anymore!!

63/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Totally content?
Then go grab a coffee, lean back and enjoy the rest of the day...!

64/65Data analysis with R

https://mareds.github.io/r_course/
https://mareds.github.io/r_course/

Thank You
For more information contact me: saskia.otto@uni-hamburg.de

http://www.researchgate.net/pro�le/Saskia_Otto
http://www.github.com/saskiaotto

65/65

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License except for the
borrowed and mentioned with proper source: statements.
Image on title and end slide: Section of an infrared satallite image showing the Larsen C ice shelf on the Antarctic
Peninsula - USGS/NASA Landsat: A Crack of Light in the Polar Dark, Landsat 8 - TIRS, June 17, 2017
(under CC0 license)

file:///Users/MacDose/Documents/lectures/saskia.otto@uni-hamburg.de
http://www.researchgate.net/profile/Saskia_Otto
http://www.github.com/saskiaotto
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://landsat.visibleearth.nasa.gov/view.php?id=90481

